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Cs,PdSes(1), a novel palladium polyselenide with a three-
dimensional open framework structure, has been synthesized via
a solvothermal reaction using ethylenediamine as solvent. Its
crystal structure has been determined by single crystal X-ray
diffraction. The structure belongs to the tetragonal space group
I4i/acd (No. 142), a=14.935(2), c=12.907(3) A, 1'=2897.0(8) A°,
Z=8, R1=0.044, and wR,=0.063, for 640 unique reflections. The
unique three-dimensional network is composed of two
3. [Pd(Se4).]*~ frameworks that are topologically identical and
mutually insertional. Each framework is built upon by connect-
ing the neighboring square-planar [Pd(Se4)>]* units to generate
an infinite assembly resembling alternating right- and left-
handed helices running along the c-axis. Thermal analysis (TGA)
showed that compound 1 is stable up to 320 °C. Optical studies
performed on the powder sample of 1 suggested that the com-
pound is a semiconductor and a band gap of 1.5 eV was estimated
from the diffuse reflectance data. © 1998 Academic Press

Recently, we have shown that ethylenediamine(en) serves
as an excellent organic medium for the crystal growth of
metal chalcogenides under mild solvothermal conditions.
A number of new compounds, most of which are metastable,
have been synthesized at temperatures below 180°C (1).
While ethylenediamine incorporates into many of these
compounds by forming a coordination complex with
a metal center to give a complex cation, the size of such
a metal complex can be crucial in the geometric arrange-
ment of the overall structural framework. The resultant
structures are typically molecular or one-dimensional. Al-
kali-metal counterions (A" = K", Rb*, and Cs™), on the
other hand, can influence the structural reorganization in
such a way as to allow the formation of extended 2D and 3D
networks, often with open channels and cavities, especially
under mild synthetic conditions (2). Such compounds are
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attractive to us due to their potential for preparation of
nanoporous chalcogenide materials. In an effort to make
new compounds of this sort, we have used alkali-metal
polychalcogenides as reactive reagents in our synthesis and
have succeeded in obtaining copper-, silver-, mercury-, and
antimony-based alkali-metal chalcogenides containing 2D
and 3D networks (3). The Pd/Pt systems are particularly
interesting due to the catalytic functions (4) of these metals
and their ability to form polychalcogenide complexes and
framework structures (5) in solution media. Here we report
the solvothermal synthesis and crystal structure of
Cs,PdSes (1), a novel palladium polyselenide with a three-
dimensional open framework structure built upon a double
helical arrangement of the [Pd(Se4),]?~ building blocks.

Solvothermal reactions of Cs,Se, Se, and PdCl, in
ethylenediamine at 160°C afforded black prism-like crystals
of 1 (6). Subsequent direct reactions of Cs,Se, Pd, and Se at
250°C produced 1 in high yield (approx. 90%).

Compound 1 represents the first ternary alkali-metal pallad-
ium chalcogenide synthesized using ethylenediame as a sol-
vent. It contains a unique three-dimensional 3 [(PdSeg)? ]
open framework structure constructed from [Pd(Se,),]*~
building blocks (7). The Pd atom lies on the Wyckoff 8a
position and possesses a 4 symmetry. It has a square-planar
coordination with four terminal Se atoms from the four
polyselenide (Sey)?~ ligands, as shown in Fig. 1. The Se—
Pd-Se angles are close to 90° (90.125°) and 180° (174.65°).
The three-dimensional framework results by the bridging of
the neighboring Pd atoms with the chelating (Se,)*~
ligands. Figure 2 gives two projections of the structure along
the ¢- and a-axis, respectively. The Cs* counterions fill in
the open spaces around each Pd(Se), unit (see Fig. 2a) with
Cs---Se(1) distances of 3.575 Ax2, 3.649Ax2, and
3.862A x2and a Cs--- Se(2) distance of 3.803 Ax2.

One of the intriguing features in this remarkable structure
is that it is composed of two 3D 3 [Pd(Se4),]*>~ frameworks
(A and B in Fig. 3) that are topologically identical and
mutually insertional. The Pd atoms in the two frameworks
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FIG. 1. The [Pd(Se,),]>~ building block. The Pd atom has a square
planar coordination to the four polyselenide Se, ligands via the terminal Se
atoms

are derived from the single crystallographic site. Each
framework (A or B) can be constructed by connecting the
neighboring [Pd(Se,),]?~ units which generates an infinite
assembly that resembles alternating right- and left-handed
helices running along the c-axis, as illustrated in Fig. 4. The
overall 3D structure results upon insertion of the two sub-

O

\ k . .
d L Ve I A 2
1I
(\§ S 4
O OB O A0

O"

LETTER TO THE EDITOR

frameworks in which the Pd(A) and Pd(B) atoms merge at
a distance of 6.453 A (along the c-axis). The square-planar
Pd(Se,) motifs in the two sub frameworks give rise to
a “staggered” configuration (see Figs. 2a and 3c). The overall
structure can also be thought of as an infinite assembly of
alternating left- and right-handed double helices running
down the c-axis that is formed by mutual insertion of A and
B at a distance of 1/2¢. Each double helix contains an A and
a B with the same handedness.

As far as we are aware, the only other three-dimensional
alkali-metal palladium chalcogenide structure that is built
upon the [Pd(Se,),]*~ motif is K,PdSe;, (8). The latter is
composed of two interpenetrating 3D frameworks,
3 [Pd(Se,),]?~ and 3[Pd(Ses),]*> . The [Pd(Se4),]*~ sub-
lattice in K,PdSe,, is very similar to the sublattice B in 1.
The Pd-Se bond length in 1, 2.428(1) A, is slightly shorter
than the average distance of 2.465(9) A in K,PdSe;, (the
3 [Pd(Se,),]?~ framework). The average Se—Se distances in
the (Se,)*>” ligands are similar in the two structures,
2.356(2) A and 2.34(1) A, respectively. The Se—Se—Se (104.58°)
and Se—Se—Pd (113.25°) angles in 1 are, however, signifi-
cantly different from those in K,PdSe;,, 106.3° and 108.6°,
respectively. While the two structures are closely related, 1
is unique in that its two sublattices (A and B) are de-
rived from a single Pd crystallographic site, they are
topologically identical, and the perfect insertion of the two
helical assemblies generates an extended yet open structural
framework.
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FIG.2. Crystal structure of Cs,PdSes (1) projected along (a) the c-axis and (b) the a-axis. The shaded circles are Pd atoms, the open circles Se, and the
doubly shaded circles Cs. The approximate dimensions of the open channels are indicated in the structure.
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FIG.3. Perspective views showing the two sub frameworks (A and B) and the overall three-dimensional 3 [Pd(Se,),]?>~ network upon insertion of the
two sub-lattices (C). Framework A is shown in black in C. The approximate dimensions of the open channels in A and B are 6.4 x 4.6 A.

Compound 1 contains several mutually perpendicular
open channels running parallel to the three crystallographic
axes. These channels are depicted in Fig. 2. Parallel to the
c-axis are the one-dimensional channels with a four-fold
symmetry. The approximate dimensions of these open chan-
nels are 4.6 x 4.6 A. The channels running parallel to a- and

b-axes are identical due to the tetragonal symmetry. When
considered separately, each A or B framework is perforated
with channels as large as 10.1 x9.6 A. Upon insertion of
A and B, channels of smaller size result. The actual dimen-
sions are 7.5x3 A (the larger one, I) and 4x3 A (the
smaller one, II).
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FIG.4. Topological drawings illustrating, (a) The side view of left- and right-handed helical arrangements of one of the 3 [Pd(Se,),]*~ sub frameworks
(A or B) in Cs,PdSeg, (b) A schematic drawing of (a) to show the propagation direction of the helical assemblies. Notice that some of the Pd atoms are
shared by the two helices. The dimensions of each of the two boxes are 3a x 3b x 4c. (c) The relation of such an arrangement to the left- and right-handed

helices.

Compound 1 is stable in air indefinitely but unstable at
high temperatures. Upon being heated to 320°C, it decom-
poses to produce PdSe,, Cs,Ses, and Se (9). The optical
properties of 1 were assessed from the diffuse reflectance
data. A band gap energy of 1.5¢V was estimated, which
confirms the semiconducting nature of this compound (10).
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